
ReTeLL (June 2018), Vol. 19

Optimized Social Network Representation Using Simulated

Annealing Algorithm

………………………………………………………………………….……………………………………………………………………………………………….…………………….

Dr. C. Muthu
Associate Professor & Head

Department of Computer Science

Loyola College, Chennai

&

M. Arun Rajesh
Data Analyst, Shalom InfoTech,

Bharathidasan University Technology Park,

Tiruchirappalli

Abstract

Several business problems have many possible solutions across many variables.

Their outcomes can vary drastically depending on the combinations of these

variables. Stochastic Optimization Algorithms, such as the Simulated Annealing

Algorithm, are often used for solving such business problems. In this paper, the

determination of the Optimized Social Network Representation by using the

Simulated Annealing Algorithm is discussed.

Keywords

Social Network Optimized Representation, Simulated Annealing Algorithm

Introduction

Business Organizations have recently started using several Machine Learning

Algorithms for getting great business insights.1 The successful implementation of

advanced Machine Learning Algorithms is now achieved by the Business

Organizations through the usage of Hadoop Ecosystem.2 The KNN Algorithm is

widely used at present for building Price Prediction Models.3 The Hierarchical

Clustering Algorithm is now used for getting useful insights regarding the

customer preferences.4 In this paper, the determination of the Optimized Social

Network Representation by using the Simulated Annealing Algorithm is

discussed. In a social network like MySpace, Face book, or LinkedIn, people are

connected because they are friends or have a professional relationship. Each

member of a social network chooses to whom they are connected, and collectively

this creates a network of people. It is interesting to visualize such social networks

to determine their structure, perhaps in order to find the Connectors, who know a

lot of people or who serve as a link between otherwise self-contained social

groups.

Optimized Representation of a Social Network

The optimized representation of a Social Network diagram shall be determined

by using the Simulated Annealing Algorithm. A full-fledged Python code file is

ReTeLL (June 2018), Vol. 19

~21~

gradually developed in this paper, which can take a list of facts about who is

friendly with whom and arrive at an optimized representation of the resultant

social network.

The determination of such optimal representation is usually done by using a

mass-and-spring algorithm. When such an algorithm is used, the different nodes

exert a push on each other and try to move apart, while the links try to pull

connected nodes closer together. Thus, the social network slowly assumes a

layout where unconnected nodes are pushed apart and connected nodes are pulled

close together - but not too close together.

Unfortunately, the mass-and-spring algorithm does not stop a line in a social

network diagram from crossing another line in that diagram. In a social network

that has a great number of links, this makes it difficult to view which nodes are

connected because visually tracking the lines as they cross each other can be

tricky at times. In order to arrive at a social network diagram with minimum

numbers of crossed lines, the simulated annealing optimization algorithm shall

be used, which is based on an appropriate cost function. In this study, a cost

function shall be formed so as to minimize the number of lines that cross each

other.

Cost Function

Every node in the social network representation has x and y coordinates. The

coordinates for all the nodes in the social network diagram can be represented as

a long list, as shown below:

 soln = [110, 190, 240, 115,]

In the above solution, the first person is placed at (110, 190), the second person

is placed at (240, 115), and so on. The cost function that is used in this study will

count the number of lines that cross each other. It is necessary to calculate the

fraction of the line where each line is crossed. If this fraction is between 0 (one

end of the line) and 1 (the other end), for both lines, then they cross each other.

If the fraction is not between 0 and 1, then the lines do not cross.

The following doCrossCount() function loops through every pair of links and

uses the current coordinates of their end points to determine whether they cross.

If they cross, the function adds 1 to the total score. A new Python program file

called enhanceSocialNetwork.py is to be created and the following

doCrossCount() function is to be added to it.

def doCrossCount(v):

 # The number list is converted into a dictionary of person: (x,y)

 loc = dict ([(people [i], (v[i*2], v[i*2+1]))

 for i in range (0, len (people))])

 total = 0

ReTeLL (June 2018), Vol. 19

 # Every pair of links is looped through

 for i in range (len (links)):

 for j in range (i+1, len(links)):

 # The locations are determined

 (x1, y1), (x2, y2) = loc[links[i][0], loc[links[i][1]]

 (x3, y3), (x4, y4) = loc[links[j][0], loc[links[j][1]]

 den = (y4–y3) * (x2–x1) – (x4–x3) * (y2–y1)

 # den is equal to 0 if the lines are parallel

 if den == 0 : continue

 # In other cases, ua and ub are the freaction of the lines

 # where they cross each other

 ua = ((x4–x3) * (y1–y3) – (y4–y3) * (x1–x3)) / den

 ub = ((x2–x1) * (y1–y3) – (y2–y1) * (x1–x3)) / den

 # In case the fraction is between 0 and 1 for both lines

 # then they cross each other.

 if ua > 0 and ua < 1 and ub > 0 and ub < 1 :

 total +=1

 return total

The domain for the optimum solution search is the range for each coordinate. In

this paper, it is assumed that the social network diagram will be laid out in a

400400 size image. But, the domain will be a little less than that in order to

allow for a slight margin around the diagram. So, the following line of code is to

be added to the end of enhanceSocialNetwork.py :

 domain = [(10, 370)] * (len(people) * 2)

Simulated Annealing Optimization Algorithm

The Simulated Annealing Optimization Algorithm begins with a random solution

to our optimized social network representation problem. There is a variable

representing the willingness to accept a worse solution, which starts very high

and gradually gets lower. In each iteration, one of the numbers in the solution is

randomly chosen and changed in a certain direction. It the new cost is lower; the

new solution becomes the current solution. However, if the cost is higher, the new

solution can still become the current solution with a certain probability. This is

done so as to avoid the local minimum problem.

In some cases, it is necessary to move to a worse solution before we can get to a

better one. Simulated Annealing Algorithm works well because it will always

accept a move for the better, and because it is willing to accept a worse solution

near the beginning of the process. As the process goes on, the algorithm becomes

less and less likely to accept a worse solution, until at the end it will only accept

ReTeLL (June 2018), Vol. 19

a better solution. The probability of a higher-cost solution being accepted is given

by the following formula:

p = e((–highcost–locost)/willingness to accept a worse solution)

Since the willingness to accept a worse solution starts very high, the exponent

will always be close to 0, so the probability will almost be 1. As the willingness

to accept a worse solution decreases, the difference between the high cost and the

low cost becomes more important. As a bigger difference leads to a lower

probability, the algorithm will favour only slightly worse solutions over much

worse ones.

The following function doAnnealingOptimize() is to be added to

enhanceSocialNetwork.py:

def doAnnealingOptimize (domain, costf, T=10000.0, coolingRate = 0.95,
 step = 1):

 # The values are initialized randomly

 vector1 = [float (random.randint (domain[i] [0], domain[i][1]))

 for i in range (len(domain))]

 while T > 1.0 :

 # One of the indices is chosen

 i = random.randint (0, len(domain) – 1)

 # A direction to change the index is chosen

 direction1 = random.randint (–step, step)

 # A new list with one of the values changed is created

 vectorb = vector1[:]

 vectorb [i] += direction1

 if vectorb [i] < domain[i][0] : vectorb[i] = domain[i][0]

 elif vectorb[i] > domain [i][1] : vectorb[i] = domain [i][1]

 # The current cost and the new cost are calculated

 ea = costf (vector1)

 eb = costf (vectorb)

 p = pow (math.e, (–eb–ea) / T)

 # Check whether it is better, or it makes the probability cutoff

 if (eb < ea or random.random() < p) :

 vector1 = vectorb

 # The willingness to accept a worse solution is decreased

 T = T * coolingRate

 return vector1

To perform annealing, the above function first creates a random solution of the

right length with all the values in the range specified by the domain parameter.

ReTeLL (June 2018), Vol. 19

The willingness to accept a worse solution and the coolingRate are optional

parameters. In each iteration, i is set to a random index of the solution and

direction1 is set to a random number between –step and step. It calculates the

current function cost if it changes the value at i by direction1.

The line of code p = pow (math.e, (–eb–ea) / T) shows the probability calculation,

which gets lower as T gets lower. If a random float between 0 and 1 is less than

this value, or if the new solution is better, the function accepts the new solution.

The function loops until the willingness to accept a worse solution has almost

reached 0, each time multiplying it by the cooling rate.

The optimized social network’s nodes’ coordinates shall now be obtained by

using the Simulated Annealing Technique in the following Python session:

>>> import enhanceSocialNetwork

>>> soln=enhanceSocialNetwork.doAnnealingOptimize
 (enhanceSocialNetwork.domain,
 enhanceSocialNetwork.doCrossCount,

 step = 50, coolingRate = 0.99)

>>> enhanceSocialNetwork.doCrossCount (soln)

1

>>> soln

[314, 180, 231, 319, 288, 227, 107, 171, 78, 96, 46, 10, 286, 360, 11, 302]

Here, the Simulated Annealing Technique has provided an optimum solution in

which only one pair of lines will cross each other. As per the above optimum

solution, the first person is placed at the position (314, 180), Augustus at (231,

319), and so on.

References

 1. Jacques Bughin, “Big Data, Big Bang?”, Journal of Big Data, 2016,Vol.3,

Iss. 2, pp. 1-14.

 2. Muthu, C. and Prakash, M.C., “Impact of Hadoop Ecosystem on Big Data

Analytics”, International Journal of Exclusive Management Research,

Special Issue, 2015, Vol. 1, Iss. 1, pp. 88-90.

 3. Muthu, C. and Prakash, M.C.,“Building a Price Predictor for an Auctioning

Website”, ReTeLL, 2015, Vol. 15, Iss. 1, pp. 135-137.

 4. Muthu, C. and Prakash, M.C., “Hierarchical Clustering of Users’

Preferences”, ReTeLL, 2016, Vol. 16, Iss. 1, pp. 135-136.

 5. Muthu, C. and Prakash, M.C., “Matching the users of a Website using SVM

Technique”, ReTeLL, 2017, Vol. 17, Iss. 1, pp. 53-56.

 6. Muthu, C. and Prakash, M.C., “Using Bayesian Classifier for Email

Sorting”, ReTeLL, 2017, Vol. 17, Iss. 1, pp. 57-60.

	RETELL_2018_22.pdf
	RETELL_2018_23.pdf
	RETELL_2018_24.pdf
	RETELL_2018_25.pdf
	RETELL_2018_26.pdf

